
Energía:
Generación y transporte de electricidad:
Inducción:
Motores y generadores eléctricos
Capacidad de un sistema físico para realizar trabajo. La materia posee energía como resultado de su movimiento o de su posición en relación con las fuerzas que actúan sobre ella. La radiación electromagnética posee energía que depende de su frecuencia y, por tanto, de su longitud de onda. Esta energía se comunica a la materia cuando absorbe radiación y se recibe de la materia cuando emite radiación. La energía asociada al movimiento se conoce como energía cinética, mientras que la relacionada con la posición es la energía potencial. Por ejemplo, un péndulo que oscila tiene una energía potencial máxima en los extremos de su recorrido; en todas las posiciones intermedias tiene energía cinética y potencial en proporciones diversas. La energía se manifiesta en varias formas, entre ellas la energía mecánica (véase Mecánica), térmica (véase Termodinámica), química (véase Reacción química), eléctrica (véase Electricidad), radiante (véase Radiación) o atómica (véase Energía nuclear). Todas las formas de energía pueden convertirse en otras formas mediante los procesos adecuados. En el proceso de transformación puede perderse o ganarse una forma de energía, pero la suma total permanece constante.
Un peso suspendido de una cuerda tiene energía potencial debido a su posición, puesto que puede realizar trabajo al caer. Una batería eléctrica tiene energía potencial en forma química. Un trozo de magnesio también tiene energía potencial en forma química, que se transforma en calor y luz si se inflama. Al disparar un fusil, la energía potencial de la pólvora se transforma en la energía cinética del proyectil. La energía cinética del rotor de una dinamo o alternador se convierte en energía eléctrica mediante la inducción electromagnética. Esta energía eléctrica puede a su vez almacenarse como energía potencial de las cargas eléctricas en un condensador o una batería, disiparse en forma de calor o emplearse para realizar trabajo en un dispositivo eléctrico. Todas las formas de energía tienden a transformarse en calor, que es la forma más degradada de la energía. En los dispositivos mecánicos la energía no empleada para realizar trabajo útil se disipa como calor de rozamiento, y las pérdidas de los circuitos eléctricos se producen fundamentalmente en forma de calor.
Las observaciones empíricas del siglo XIX llevaron a la conclusión de que aunque la energía puede transformarse no se puede crear ni destruir. Este concepto, conocido como principio de conservación de la energía, constituye uno de los principios básicos de la mecánica clásica. Al igual que el principio de conservación de la materia, sólo se cumple en fenómenos que implican velocidades bajas en comparación con la velocidad de la luz. Cuando las velocidades se empiezan a aproximar a la de la luz, como ocurre en las reacciones nucleares, la materia puede transformarse en energía y viceversa (véase Relatividad). En la física moderna se unifican ambos conceptos, la conservación de la energía y de la masa.
Conjunto de instalaciones que se utilizan para transformar otros tipos de energía en electricidad y transportarla hasta los lugares donde se consume. La generación y transporte de energía en forma de electricidad tiene importantes ventajas económicas debido al coste por unidad generada. Las instalaciones eléctricas también permiten utilizar la energía hidroeléctrica a mucha distancia del lugar donde se genera. Estas instalaciones suelen utilizar corriente alterna, ya que es fácil reducir o elevar el voltaje con transformadores. De esta manera, cada parte del sistema puede funcionar con el voltaje apropiado. Las instalaciones eléctricas tienen seis elementos principales: la central eléctrica, los transformadores, que elevan el voltaje de la energía eléctrica generada a las altas tensiones utilizadas en las líneas de transporte, las líneas de transporte, las subestaciones donde la señal baja su voltaje para adecuarse a las líneas de distribución, las líneas de distribución y los transformadores que bajan el voltaje al valor utilizado por los consumidores.
En una instalación normal, los generadores de la central eléctrica suministran voltajes de 26.000 voltios; voltajes superiores no son adecuados por las dificultades que presenta su aislamiento y por el riesgo de cortocircuitos y sus consecuencias. Este voltaje se eleva mediante transformadores a tensiones entre 138.000 y 765.000 voltios para la línea de transporte primaria (cuanto más alta es la tensión en la línea, menor es la corriente y menores son las pérdidas, ya que éstas son proporcionales al cuadrado de la intensidad de corriente). En la subestación, el voltaje se transforma en tensiones entre 69.000 y 138.000 voltios para que sea posible transferir la electricidad al sistema de distribución. La tensión se baja de nuevo con transformadores en cada punto de distribución. La industria pesada suele trabajar a 33.000 voltios (33 kilovoltios), y los trenes eléctricos requieren de 15 a 25 kilovoltios. Para su suministro a los consumidores se baja más la tensión: la industria suele trabajar a tensiones entre 380 y 415 voltios, y las viviendas reciben entre 220 y 240 voltios en algunos países y entre 110 y 125 en otros.
El desarrollo actual de los rectificadores de estado sólido para alta tensión hace posible una conversión económica de alta tensión de corriente alterna a alta tensión de corriente continua para la distribución de electricidad (véase Rectificación). Esto evita las pérdidas inductivas y capacitivas que se producen en la transmisión de corriente alterna (véase más abajo).
La estación central de una instalación eléctrica consta de una máquina motriz, como una turbina de combustión, que mueve un generador eléctrico. La mayor parte de la energía eléctrica del mundo se genera en centrales térmicas alimentadas con carbón, aceite, energía nuclear o gas; una pequeña parte se genera en centrales hidroeléctricas, diesel o provistas de otros sistemas de combustión interna.
Las líneas de conducción se pueden diferenciar según su función secundaria en líneas de transporte (altos voltajes) y líneas de distribución (bajos voltajes). Las primeras se identifican a primera vista por el tamaño de las torres o apoyos, la distancia entre conductores, las largas series de platillos de que constan los aisladores y la existencia de una línea superior de cable más fino que es la línea de tierra. Las líneas de distribución, también denominadas terciarias, son las últimas existentes antes de llegar la electricidad al usuario, y reciben aquella denominación por tratarse de las que distribuyen la electricidad al último eslabón de la cadena.
Las líneas de conducción de alta tensión suelen estar formadas por cables de cobre, aluminio o acero recubierto de aluminio o cobre. Estos cables están suspendidos de postes o pilones, altas torres de acero, mediante una sucesión de aislantes de porcelana. Gracias a la utilización de cables de acero recubierto y altas torres, la distancia entre éstas puede ser mayor, lo que reduce el coste del tendido de las líneas de conducción; las más modernas, con tendido en línea recta, se construyen con menos de cuatro torres por kilómetro. En algunas zonas, las líneas de alta tensión se cuelgan de postes de madera; para las líneas de distribución, a menor tensión, suelen ser postes de madera, más adecuados que las torres de acero. En las ciudades y otras áreas donde los cables aéreos son peligrosos se utilizan cables aislados subterráneos. Algunos cables tienen el centro hueco para que circule aceite a baja presión. El aceite proporciona una protección temporal contra el agua, que podría producir fugas en el cable. Se utilizan con frecuencia tubos rellenos con muchos cables y aceite a alta presión (unas 15 atmósferas) para la transmisión de tensiones de hasta 345 kilovoltios.
Cualquier sistema de distribución de electricidad requiere una serie de equipos suplementarios para proteger los generadores, transformadores y las propias líneas de conducción. Suelen incluir dispositivos diseñados para regular la tensión que se proporciona a los usuarios y corregir el factor de potencia del sistema (véase más abajo).
Los cortacircuitos se utilizan para proteger todos los elementos de la instalación contra cortocircuitos y sobrecargas y para realizar las operaciones de conmutación ordinarias. Estos cortacircuitos son grandes interruptores que se activan de modo automático cuando ocurre un cortocircuito o cuando una circunstancia anómala produce una subida repentina de la corriente. En el momento en el que este dispositivo interrumpe la corriente se forma un arco eléctrico entre sus terminales. Para evitar este arco, los grandes cortacircuitos, como los utilizados para proteger los generadores y las secciones de las líneas de conducción primarias, están sumergidos en un líquido aislante, por lo general aceite. También se utilizan campos magnéticos para romper el arco. En tiendas, fábricas y viviendas se utilizan pequeños cortacircuitos diferenciales. Los aparatos eléctricos también incorporan unos cortacircuitos llamados fusibles, consistentes en un alambre de una aleación de bajo punto de fusión; el fusible se introduce en el circuito y se funde si la corriente aumenta por encima de un valor predeterminado.
2 FALLOS DEL SISTEMA
En muchas zonas del mundo las instalaciones locales o nacionales están conectadas formando una red. Esta red de conexiones permite que la electricidad generada en un área se comparta con otras zonas. Cada empresa aumenta su capacidad de reserva y comparte el riesgo de apagones.
Estas redes son enormes y complejos sistemas compuestos y operados por grupos diversos. Representan una ventaja económica pero aumentan el riesgo de un apagón generalizado, ya que si un pequeño cortocircuito se produce en una zona, por sobrecarga en las zonas cercanas se puede transmitir en cadena a todo el país. Muchos hospitales, edificios públicos, centros comerciales y otras instalaciones que dependen de la energía eléctrica tienen sus propios generadores para eliminar el riesgo de apagones.
3 REGULACIÓN DEL VOLTAJE
Las largas líneas de conducción presentan inductancia, capacitancia y resistencia al paso de la corriente eléctrica (véase Circuito eléctrico). El efecto de la inductancia y de la capacitancia de la línea es la variación de la tensión si varía la corriente, por lo que la tensión suministrada varía con la carga acoplada. Se utilizan muchos tipos de dispositivos para regular esta variación no deseada. La regulación de la tensión se consigue con reguladores de la inducción y motores síncronos de tres fases, también llamados condensadores síncronos. Ambos varían los valores eficaces de la inductancia y la capacitancia en el circuito de transmisión. Ya que la inductancia y la capacitancia tienden a anularse entre sí, cuando la carga del circuito tiene mayor reactancia inductiva que capacitiva (lo que suele ocurrir en las grandes instalaciones) la potencia suministrada para una tensión y corriente determinadas es menor que si las dos son iguales. La relación entre esas dos cantidades de potencia se llama factor de potencia. Como las pérdidas en las líneas de conducción son proporcionales a la intensidad de corriente, se aumenta la capacitancia para que el factor de potencia tenga un valor lo más cercano posible a 1. Por esta razón se suelen instalar grandes condensadores en los sistemas de transmisión de electricidad.
4 PRODUCCIÓN MUNDIAL DE ENERGÍA ELÉCTRICA
Durante el periodo comprendido entre 1959 y 1990, la producción y consumo anual de electricidad aumentó de poco más de 1 billón de kWh a más de 11,5 billones. También tuvo lugar un cambio en el tipo de generación de energía. En 1950 las dos terceras partes de la energía eléctrica se generaban en centrales térmicas y un tercio en centrales hidroeléctricas. En 1990 las centrales térmicas seguían produciendo alrededor del 60% de la electricidad, pero la producción de las centrales hidroeléctricas descendió hasta poco más del 20% y la energía nuclear generaba el 15% de la producción mundial. Sin embargo, el crecimiento de la energía nuclear descendió en algunos países debido a consideraciones de seguridad. En Estados Unidos las centrales nucleares generaron el 20% de la electricidad en 1990, mientras que en Francia, líder mundial del uso de energía atómica, las centrales nucleares proporcionan el 75% de su producción eléctrica.
5 IMPACTO AMBIENTAL DE LAS LÍNEAS DE CONDUCCIÓN
Como toda actividad humana, la generación y transporte de energía eléctrica produce una serie de impactos ambientales. Los impactos producidos en el proceso de generación son altamente específicos de la fuente de energía utilizada: hidráulica, nuclear, térmica… Sin embargo, las líneas de transporte producen unos tipos definidos de impacto, con independencia del origen de la energía eléctrica transportada. Así, cabe destacar el impacto producido sobre la fauna, y en concreto las aves, que sufren electrocución al posarse en los apoyos de los postes, especialmente los de distribución, ya que en estos los conductores están más juntos entre sí y respecto de la estructura de apoyo, y las cadenas de aisladores son más cortas, lo que provoca que sea relativamente fácil que un ave posada en el poste toque un conductor y se produzca la electrocución. En el caso de las líneas de transporte, los accidentes por electrocución son raros, afectando sólo a grandes aves que pueden tocar a un tiempo dos conductores o un conductor y el apoyo. La clase de accidente más común en este tipo de líneas es la colisión con los cables, sobre todo con el de tierra, más fino y situado por encima del resto. El mayor riesgo para la vegetación en una línea en servicio es el de incendio por caída de un cable en caso de accidente, como la caída de un rayo. En cualquier caso, las compañías eléctricas son cada vez más sensibles a estos problemas, por lo que están actuando en zonas especialmente afectadas y considerando estos riesgos en líneas de nueva construcción.
Generación de una corriente eléctrica en un conductor en movimiento en el interior de un campo magnético (de aquí el nombre completo, inducción electromagnética). El efecto fue descubierto por el físico británico Michael Faraday y condujo directamente al desarrollo del generador eléctrico rotatorio, que convierte el movimiento mecánico en energía eléctrica.
Cuando un conductor, como por ejemplo un cable metálico, se mueve a través del espacio libre entre los dos polos de un imán, los electrones del cable, con carga negativa, experimentan una fuerza a lo largo de él y se acumulan en uno de sus extremos, dejando en el otro extremo núcleos atómicos con carga positiva, parcialmente despojados de electrones. Esto crea una diferencia de potencial, o voltaje, entre los dos extremos del cable; si estos extremos se conectan con un conductor, fluirá una corriente alrededor del circuito. Éste es el principio que da base a los generadores eléctricos rotatorios, en los que un bucle de hilo conductor gira dentro de un campo magnético para producir un voltaje y generar una corriente en un circuito cerrado. Véase Motores y generadores eléctricos.
La inducción ocurre solamente cuando el conductor se mueve en ángulo recto con respecto a la dirección del campo magnético. Este movimiento es necesario para que se produzca la inducción, pero es un movimiento relativo entre el conductor y el campo magnético. De esta forma, un campo magnético en expansión y compresión puede crearse con una corriente a través de un cable o un electroimán. Dado que la corriente del electroimán aumenta y se reduce, su campo magnético se expande y se comprime (las líneas de fuerza se mueven hacia adelante y hacia atrás). El campo en movimiento puede inducir una corriente en un hilo fijo cercano. Esta inducción sin movimiento mecánico es la base de los transformadores eléctricos.
Un transformador consta normalmente de dos bobinas de hilo conductor adyacentes, enrolladas alrededor de un solo núcleo de material magnético. Se utiliza para acoplar dos o más circuitos de corriente alterna empleando la inducción existente entre las bobinas. Véase Generación y transporte de electricidad.
Cuando varía la corriente de un conductor, el campo magnético resultante varía a lo ancho del propio conductor e induce en él un voltaje. Este voltaje autoinducido se opone al voltaje aplicado y tiende a limitar o invertir el voltaje original. La autoinducción eléctrica es, por lo tanto, análoga a la inercia mecánica. Una bobina de inductancia, o estrangulador, tiende a suavizar la corriente variante, de la misma forma que un volante suaviza la rotación de un motor. La cantidad de autoinducción de una bobina, su inductancia, se mide por una unidad eléctrica denominada henrio, en honor al físico estadounidense Joseph Henry, quien descubrió el efecto. La autoinductancia es independiente del voltaje o la intensidad de corriente. Está determinada por la geometría de la bobina y las propiedades magnéticas del núcleo.
Grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa, con medios electromagnéticos. A una máquina que convierte la energía mecánica en eléctrica se le denomina generador, alternador o dinamo, y a una máquina que convierte la energía eléctrica en mecánica se le denomina motor.
Dos principios físicos relacionados entre sí sirven de base al funcionamiento de los generadores y de los motores. El primero es el principio de la inducción descubierto por el científico e inventor británico Michael Faraday en 1831. Si un conductor se mueve a través de un campo magnético, o si está situado en las proximidades de otro conductor por el que circula una corriente de intensidad variable, se establece o se induce una corriente eléctrica en el primer conductor. El principio opuesto a éste fue observado en 1820 por el físico francés André Marie Ampère. Si una corriente pasa a través de un conductor situado en el interior de un campo magnético, éste ejerce una fuerza mecánica sobre el conductor. Véase Magnetismo.
La máquina dinamoeléctrica más sencilla es la dinamo de disco desarrollada por Faraday, que consiste en un disco de cobre que se monta de tal forma que la parte del disco que se encuentra entre el centro y el borde quede situada entre los polos de un imán de herradura. Cuando el disco gira, se induce una corriente entre el centro del disco y su borde debido a la acción del campo del imán. El disco puede fabricarse para funcionar como un motor mediante la aplicación de un voltaje entre el borde y el centro del disco, lo que hace que el disco gire gracias a la fuerza producida por el campo magnético.
El campo magnético de un imán permanente sólo tiene fuerza suficiente como para hacer funcionar una dinamo pequeña o motor. Por ello, los electroimanes se emplean en máquinas grandes. Tanto los motores como los generadores tienen dos unidades básicas: el inductor, que crea el campo magnético y que suele ser un electroimán, y la armadura o inducido, que es la estructura que sostiene los conductores que cortan el campo magnético y transporta la corriente inducida en un generador, o la corriente de excitación en el caso del motor. La armadura es por lo general un núcleo de hierro dulce laminado, alrededor del cual se enrollan los cables conductores.
2 GENERADORES DE CORRIENTE CONTINUA
Si una armadura gira entre dos polos magnéticos fijos, la corriente en la armadura circula en un sentido durante la mitad de cada revolución, y en el otro sentido durante la otra mitad. Para producir un flujo constante de corriente en un sentido, o corriente continua, en un aparato determinado, es necesario disponer de un medio para invertir el flujo de corriente fuera del generador una vez durante cada revolución. En las máquinas antiguas esta inversión se llevaba a cabo mediante un conmutador, un anillo de metal partido montado sobre el eje de una armadura. Las dos mitades del anillo se aislaban entre sí y servían como bornes de la bobina. Las escobillas fijas de metal o de carbón se mantenían en contacto con el conmutador, que al girar conectaba eléctricamente la bobina a los cables externos. Cuando la armadura giraba, cada escobilla estaba en contacto de forma alternativa con las mitades del conmutador, cambiando la posición en el momento en el que la corriente invertía su sentido dentro de la bobina de la armadura. Así se producía un flujo de corriente de un sentido en el circuito exterior al que el generador estaba conectado. Los generadores de corriente continua funcionan normalmente a voltajes bastante bajos para evitar las chispas que se producen entre las escobillas y el conmutador a voltajes altos. El potencial más alto desarrollado para este tipo de generadores suele ser de 1.500 voltios. En algunas máquinas más modernas esta inversión se realiza usando aparatos de potencia electrónica, como por ejemplo rectificadores de diodo.
Los generadores modernos de corriente continua utilizan armaduras de tambor, que suelen estar formadas por un gran número de bobinas agrupadas en hendiduras longitudinales dentro del núcleo de la armadura y conectadas a los segmentos adecuados de un conmutador múltiple. Si una armadura tiene un solo circuito de cable, la corriente que se produce aumentará y disminuirá dependiendo de la parte del campo magnético a través del cual se esté moviendo el circuito. Un conmutador de varios segmentos usado con una armadura de tambor conecta siempre el circuito externo a uno de cable que se mueve a través de un área de alta intensidad del campo, y como resultado la corriente que suministran las bobinas de la armadura es prácticamente constante. Los campos de los generadores modernos se equipan con cuatro o más polos electromagnéticos que aumentan el tamaño y la resistencia del campo magnético. En algunos casos, se añaden interpolos más pequeños para compensar las distorsiones que causa el efecto magnético de la armadura en el flujo eléctrico del campo.
El campo inductor de un generador se puede obtener mediante un imán permanente (magneto) o por medio de un electroimán (dinamo). En este último caso, el electroimán se excita por una corriente independiente o por autoexcitación, es decir, la propia corriente producida en la dinamo sirve para crear el campo magnético en las bobinas del inductor. Existen tres tipos de dinamo según sea la forma en que estén acoplados el inductor y el inducido: en serie, en derivación y en combinación.
3 MOTORES DE CORRIENTE CONTINUA
En general, los motores de corriente continua son similares en su construcción a los generadores. De hecho podrían describirse como generadores que funcionan al revés. Cuando la corriente pasa a través de la armadura de un motor de corriente continua, se genera un par de fuerzas debido a la acción del campo magnético, y la armadura gira (véase Momento de una fuerza). La función del conmutador y la de las conexiones de las bobinas del campo de los motores es exactamente la misma que en los generadores. La revolución de la armadura induce un voltaje en las bobinas de ésta. Este voltaje es opuesto al voltaje exterior que se aplica a la armadura, y de ahí que se conozca como voltaje inducido o fuerza contraelectromotriz. Cuando el motor gira más rápido, el voltaje inducido aumenta hasta que es casi igual al aplicado. La corriente entonces es pequeña, y la velocidad del motor permanecerá constante siempre que el motor no esté bajo carga y tenga que realizar otro trabajo mecánico que no sea el requerido para mover la armadura. Bajo carga, la armadura gira más lentamente, reduciendo el voltaje inducido y permitiendo que fluya una corriente mayor en la armadura.
Debido a que la velocidad de rotación controla el flujo de la corriente en la armadura, deben usarse aparatos especiales para arrancar los motores de corriente continua. Cuando la armadura está parada, ésta no tiene realmente resistencia, y si se aplica el voltaje de funcionamiento normal, se producirá una gran corriente, que podría dañar el conmutador y las bobinas de la armadura. El medio normal de prevenir estos daños es el uso de una resistencia de encendido conectada en serie a la armadura, para disminuir la corriente antes de que el motor consiga desarrollar el voltaje inducido adecuado. Cuando el motor acelera, la resistencia se reduce gradualmente, tanto de forma manual como automática.
La velocidad a la que funciona un motor depende de la intensidad del campo magnético que actúa sobre la armadura, así como de la corriente de ésta. Cuanto más fuerte es el campo, más bajo es el grado de rotación necesario para generar un voltaje inducido lo bastante grande como para contrarrestar el voltaje aplicado. Por esta razón, la velocidad de los motores de corriente continua puede controlarse mediante la variación de la corriente del campo.
4 GENERADORES DE CORRIENTE ALTERNA (ALTERNADORES)
Como se decía antes, un generador simple sin conmutador producirá una corriente eléctrica que cambia de sentido a medida que gira la armadura. Este tipo de corriente alterna es ventajosa para la transmisión de potencia eléctrica, por lo que la mayoría de los generadores eléctricos son de este tipo. En su forma más simple, un generador de corriente alterna se diferencia de uno de corriente continua en sólo dos aspectos: los extremos de la bobina de su armadura están sacados a los anillos colectores sólidos sin segmentos del árbol del generador en lugar de los conmutadores, y las bobinas de campo se excitan mediante una fuente externa de corriente continua más que con el generador en sí. Los generadores de corriente alterna de baja velocidad se fabrican con hasta 100 polos, para mejorar su eficiencia y para lograr con más fácilidad la frecuencia deseada. Los alternadores accionados por turbinas de alta velocidad, sin embargo, son a menudo máquinas de dos polos. La frecuencia de la corriente que suministra un generador de corriente alterna es igual a la mitad del producto del número de polos por el número de revoluciones por segundo de la armadura.
A veces, es preferible generar un voltaje tan alto como sea posible. Las armaduras rotatorias no son prácticas en este tipo de aplicaciones, debido a que pueden producirse chispas entre las escobillas y los anillos colectores, y a que pueden producirse fallos mecánicos que podrían causar cortocircuitos. Por tanto, los alternadores se construyen con una armadura fija en la que gira un rotor compuesto de un número de imanes de campo. El principio de funcionamiento es el mismo que el del generador de corriente alterna descrito con anterioridad, excepto en que el campo magnético (en lugar de los conductores de la armadura) está en movimiento.
La corriente que se genera mediante los alternadores descritos más arriba aumenta hasta un pico, cae hasta cero, desciende hasta un pico negativo y sube otra vez a cero varias veces por segundo, dependiendo de la frecuencia para la que esté diseñada la máquina. Este tipo de corriente se conoce como corriente alterna monofásica. Sin embargo, si la armadura la componen dos bobinas, montadas a 90º una de otra, y con conexiones externas separadas, se producirán dos ondas de corriente, una de las cuales estará en su máximo cuando la otra sea cero. Este tipo de corriente se denomina corriente alterna bifásica. Si se agrupan tres bobinas de armadura en ángulos de 120º, se producirá corriente en forma de onda triple, conocida como corriente alterna trifásica. Se puede obtener un número mayor de fases incrementando el número de bobinas en la armadura, pero en la práctica de la ingeniería eléctrica moderna se usa sobre todo la corriente alterna trifásica, con el alternador trifásico, que es la máquina dinamoeléctrica que se emplea normalmente para generar potencia eléctrica.
5 MOTORES DE CORRIENTE ALTERNA
Se diseñan dos tipos básicos de motores para funcionar con corriente alterna polifásica: los motores síncronos y los motores de inducción. El motor síncrono es en esencia un alternador trifásico que funciona a la inversa. Los imanes del campo se montan sobre un rotor y se excitan mediante corriente continua, y las bobinas de la armadura están divididas en tres partes y alimentadas con corriente alterna trifásica. La variación de las tres ondas de corriente en la armadura provoca una reacción magnética variable con los polos de los imanes del campo, y hace que el campo gire a una velocidad constante, que se determina por la frecuencia de la corriente en la línea de potencia de corriente alterna.
La velocidad constante de un motor síncrono es ventajosa en ciertos aparatos. Sin embargo, no puede utilizarse este tipo de motores en aplicaciones en las que la carga mecánica sobre el motor llega a ser muy grande, ya que si el motor reduce su velocidad cuando está bajo carga puede quedar fuera de fase con la frecuencia de la corriente y llegar a pararse. Los motores síncronos pueden funcionar con una fuente de potencia monofásica mediante la inclusión de los elementos de circuito adecuados para conseguir un campo magnético rotatorio.
El más simple de todos los tipos de motores eléctricos es el motor de inducción de caja de ardilla que se usa con alimentación trifásica. La armadura de este tipo de motor consiste en tres bobinas fijas y es similar a la del motor síncrono. El elemento rotatorio consiste en un núcleo, en el que se incluye una serie de conductores de gran capacidad colocados en círculo alrededor del árbol y paralelos a él. Cuando no tienen núcleo, los conductores del rotor se parecen en su forma a las jaulas cilíndricas que se usaban para las ardillas. El flujo de la corriente trifásica dentro de las bobinas de la armadura fija genera un campo magnético rotatorio, y éste induce una corriente en los conductores de la jaula. La reacción magnética entre el campo rotatorio y los conductores del rotor que transportan la corriente hace que éste gire. Si el rotor da vueltas exactamente a la misma velocidad que el campo magnético, no habrá en él corrientes inducidas, y, por tanto, el rotor no debería girar a una velocidad síncrona. En funcionamiento, la velocidad de rotación del rotor y la del campo difieren entre sí de un 2 a un 5%. Esta diferencia de velocidad se conoce como caída.
Los motores con rotores del tipo jaula de ardilla se pueden usar con corriente alterna monofásica utilizando varios dispositivos de inductancia y capacitancia, que alteren las características del voltaje monofásico y lo hagan parecido al bifásico. Estos motores se denominan motores multifásicos o motores de condensador (o de capacidad), según los dispositivos que usen. Los motores de jaula de ardilla monofásicos no tienen un par de arranque grande, y se utilizan motores de repulsión-inducción para las aplicaciones en las que se requiere el par. Este tipo de motores pueden ser multifásicos o de condensador, pero disponen de un interruptor manual o automático que permite que fluya la corriente entre las escobillas del conmutador cuando se arranca el motor, y los circuitos cortos de todos los segmentos del conmutador, después de que el motor alcance una velocidad crítica. Los motores de repulsión-inducción se denominan así debido a que su par de arranque depende de la repulsión entre el rotor y el estátor, y su par, mientras está en funcionamiento, depende de la inducción. Los motores de baterías en serie con conmutadores, que funcionan tanto con corriente continua como con corriente alterna, se denominan motores universales. Éstos se fabrican en tamaños pequeños y se utilizan en aparatos domésticos.
6 OTROS TIPOS DE MÁQUINAS
En aplicaciones especiales se emplean algunos tipos de máquinas dinamoeléctricas combinadas. Por lo general, es deseable cambiar de corriente continua a alterna o a la inversa, o cambiar de voltaje de alimentación de corriente continua, o la frecuencia o fase con alimentación de corriente alterna. Una forma de realizar dichos cambios, es usar un motor que funcione con el tipo disponible de alimentación eléctrica para que haga funcionar un generador que proporcione a su vez la corriente y el voltaje deseados. Los generadores de motor, que están compuestos de un motor que se acopla mecánicamente a un generador adecuado, pueden realizar la mayoría de las conversiones antes indicadas. Un transformador rotatorio es una máquina que sirve para convertir corriente alterna en continua, usando bobinas separadas en una armadura rotatoria común. El voltaje de alimentación de corriente alterna se aplica a la armadura a través de los anillos colectores, y el voltaje de la corriente continua se extrae de la máquina con un conmutador independiente. Un dinamotor, que se usa por lo general para convertir corriente continua de bajo voltaje en corriente de alto voltaje, es una máquina parecida que tiene bobinas de armadura independientes.
Las máquinas de corriente continua conocidas como amplidinas o rototroles, que tienen varias bobinas de campo, se usan como amplificadores de potencia. Un pequeño cambio en la potencia suministrada a una bobina de campo produce un gran cambio en la potencia de salida de la máquina. Estos amplificadores electrodinámicos se utilizan a menudo en servomecanismos y otros sistemas de control. Véase Automatización; Electricidad.
![]()








