Nucleares: Combustibles             

 

Fukushima. Reactor 3 Energía nuclear: Combustibles y residuos:
Los combustibles peligrosos empleados en los reactores nucleares presentan problemas para su manejo, sobre todo en el caso de los combustibles agotados, que deben ser almacenados o eliminados de alguna forma.

El ciclo del combustible nuclear:
Cualquier central de producción de energía eléctrica es sólo parte de un ciclo energético global. El ciclo del combustible de uranio empleado en los sistemas RAL es actualmente el más importante en la producción mundial de energía nuclear, y conlleva muchas etapas. El uranio, con un contenido de aproximadamente el 0,7% de uranio 235, se obtiene en minas subterráneas o a cielo abierto. El mineral se concentra mediante trituración y se transporta a una planta de conversión, donde el uranio se transforma en el gas hexafluoruro de uranio (UF6). En una planta de enriquecimiento isotópico por difusión, el gas se hace pasar a presión por una barrera porosa. Las moléculas que contienen uranio 235, más ligeras, atraviesan la barrera con más facilidad que las que contienen uranio 238. Este proceso enriquece el uranio hasta alcanzar un 3% de uranio 235. Los residuos, o uranio agotado, contienen aproximadamente el 0,3% de uranio 235. El producto enriquecido se lleva a una planta de fabricación de combustible, donde el gas UF6 se convierte en óxido de uranio en polvo y posteriormente en bloques de cerámica que se cargan en barras de combustible resistentes a la corrosión. Estas barras se agrupan en elementos de combustible y se transportan a la central nuclear. Un reactor de agua a presión típico de 1.000 MW tiene unos 200 elementos de combustible, de los que una tercera parte se sustituye cada año debido al agotamiento del uranio 235 y a la acumulación de productos de fisión que absorben neutrones. Al final de su vida, el combustible es enormemente radiactivo debido a los productos de fisión que contiene, por lo que sigue desprendiendo una cantidad de energía considerable. El combustible extraído se coloca en piscinas de almacenamiento llenas de agua situadas en las instalaciones de la central, donde permanece un año o más. Al final del periodo de enfriamiento, los elementos de combustible agotados se envían en contenedores blindados a una instalación de almacenamiento permanente o a una planta de reprocesamiento químico, donde se recuperan el uranio no empleado y el plutonio 239 producido en el reactor, y se concentran los residuos radiactivos. El combustible agotado todavía contiene casi todo el uranio 238 original, aproximadamente un tercio del uranio 235 y parte del plutonio 239 producido en el reactor. Cuando el combustible agotado se almacena de forma permanente, se desperdicia todo este contenido potencial de energía. Cuando el combustible se reprocesa, el uranio se recicla en la planta de difusión, y el plutonio 239 recuperado puede sustituir parcialmente al uranio 235 en los nuevos elementos de combustible. En el ciclo de combustible del RARML, el plutonio generado en el reactor siempre se recicla para emplearlo como nuevo combustible. Los materiales utilizados en la planta de fabricación de elementos de combustible son uranio 238 reciclado, uranio agotado procedente de la planta de separación isotópica, y parte del plutonio 239 recuperado. No es necesario extraer uranio adicional en las minas, puesto que las existencias actuales de las plantas de separación podrían suministrar durante siglos a los reactores autorregenerativos. Como estos reactores producen más plutonio 239 del que necesitan para renovar su propio combustible, aproximadamente el 20% del plutonio recuperado se almacena para su uso posterior en el arranque de nuevos reactores autorregenerativos. El paso final en cualquiera de los ciclos de combustible es el almacenamiento a largo plazo de los residuos altamente radiactivos, que continúan presentando peligro para los seres vivos durante miles de años. Varias tecnologías parecen satisfactorias para el almacenamiento seguro de los residuos, pero no se han construido instalaciones a gran escala para demostrar el proceso. Los elementos de combustible pueden almacenarse en depósitos blindados y vigilados hasta que se tome una decisión definitiva sobre su destino, o pueden ser transformados en compuestos estables, fijados en material cerámico o vidrio, encapsulados en bidones de acero inoxidable y enterrados a gran profundidad en formaciones geológicas muy estables.

Seguridad nuclear:
La preocupación de la opinión pública en torno a la aceptabilidad de la energía nuclear procedente de la fisión se debe a dos características básicas del sistema. La primera es el elevado nivel de radiactividad que existe en diferentes fases del ciclo nuclear, incluida la eliminación de residuos. La segunda es el hecho de que los combustibles nucleares uranio 235 y plutonio 239 son los materiales con que se fabrican las armas nucleares. Véase Lluvia radiactiva. En la década de 1950 se pensó que la energía nuclear podía ofrecer un futuro de energía barata y abundante. La industria energética confiaba en que la energía nuclear sustituyera a los combustibles fósiles, cada vez más escasos, y disminuyera el coste de la electricidad. Los grupos preocupados por la conservación de los recursos naturales preveían una reducción de la contaminación atmosférica y de la minería a cielo abierto. La opinión pública era en general favorable a esta nueva fuente de energía, y esperaba que el uso de la energía nuclear pasara del terreno militar al civil. Sin embargo, después de esta euforia inicial, crecieron las reservas en torno a la energía nuclear a medida que se estudiaban más profundamente las cuestiones de seguridad nuclear y proliferación de armamento. En todos los países del mundo existen grupos opuestos a la energía nuclear, y las normas estatales se han hecho complejas y estrictas. Suecia, por ejemplo, pretende limitar su programa a unos 10 reactores. Austria ha cancelado su programa. En cambio, Gran Bretaña, Francia, Alemania y Japón siguen avanzando en este terreno. El Consejo de Seguridad Nuclear (CSN) es el organismo encargado de velar en España por la seguridad nuclear y la protección radiológica. Informa sobre la concesión o retirada de autorizaciones, inspecciona la construcción, puesta en marcha y explotación de instalaciones nucleares o radiactivas, participa en la confección de planes de emergencia y promociona la realización de trabajos de investigación.

Riesgos radiológicos:
Los materiales radiactivos emiten radiación ionizante penetrante que puede dañar los tejidos vivos. La unidad que suele emplearse para medir la dosis de radiación equivalente en los seres humanos es el milisievert. La dosis de radiación equivalente mide la cantidad de radiación absorbida por el organismo, corregida según la naturaleza de la radiación puesto que los diferentes tipos de radiación son más o menos nocivos. En el caso del Reino Unido, por ejemplo, cada individuo está expuesto a unos 2,5 milisieverts anuales por la radiación de fondo procedente de fuentes naturales. Los trabajadores de la industria nuclear están expuestos a unos 4,5 milisieverts (aproximadamente igual que las tripulaciones aéreas, sometidas a una exposición adicional a los rayos cósmicos). La exposición de un individuo a 5 sieverts suele causar la muerte. Una gran población expuesta a bajos niveles de radiación experimenta aproximadamente un caso de cáncer adicional por cada 10 sieverts de dosis equivalente total. Por ejemplo, si una población de 10.000 personas está expuesta a una dosis de 10 milisieverts por individuo, la dosis total será de 100 sieverts, por lo que habrá 10 casos de cáncer debidos a la radiación (además de los cánceres producidos por otras causas). Véase Efectos biológicos de la radiación. En la mayoría de las fases del ciclo de combustible nuclear pueden existir riesgos radiológicos. El gas radón, radiactivo, es un contaminante frecuente en las minas subterráneas de uranio. Las operaciones de extracción y trituración del mineral producen grandes cantidades de material que contiene bajas concentraciones de uranio. Estos residuos tienen que ser conservados en fosas impermeables y cubiertos por una capa de tierra de gran espesor para evitar su liberación indiscriminada en la biosfera. Las plantas de enriquecimiento de uranio y de fabricación de combustible contienen grandes cantidades de hexafluoruro de uranio (UF6), un gas corrosivo. Sin embargo, el riesgo radiológico es menor, y las precauciones habituales que se toman con las sustancias químicas peligrosas bastan para garantizar la seguridad.

Sistemas de seguridad de los reactores:
Se ha dedicado una enorme atención a la seguridad de los reactores. En un reactor en funcionamiento, la mayor fuente de radiactividad, con diferencia, son los elementos de combustible. Una serie de barreras impide que los productos de fisión pasen a la biosfera durante el funcionamiento normal. El combustible está en el interior de tubos resistentes a la corrosión. Las gruesas paredes de acero del sistema de refrigeración primario del RAP forman una segunda barrera. El propio agua de refrigeración absorbe parte de los isótopos biológicamente importantes, como el yodo. El edificio de acero y hormigón supone una tercera barrera. Durante el funcionamiento de una central nuclear, es inevitable que se liberen algunos materiales radiactivos. La exposición total de las personas que viven en sus proximidades suele representar un porcentaje muy bajo de la radiación natural de fondo. Sin embargo, las principales preocupaciones se centran en la liberación de productos radiactivos causada por accidentes en los que se ve afectado el combustible y fallan los dispositivos de seguridad. El principal peligro para la integridad del combustible es un accidente de pérdida de refrigerante, en el que el combustible resulta dañado o incluso se funde. Los productos de fisión pasan al refrigerante, y si se rompe el sistema de refrigeración, los productos de fisión penetran en el edificio del reactor. Los sistemas de los reactores emplean una compleja instrumentación para vigilar constantemente su situación y controlar los sistemas de seguridad empleados para desconectar el reactor en circunstancias anómalas. El diseño de los RAP incluye sistemas de seguridad de refuerzo que inyectan boro en el refrigerante para absorber neutrones y detener la reacción en cadena, con lo que la desconexión está aún más garantizada. En los reactores de agua ligera, el refrigerante está sometido a una presión elevada. En caso de que se produjera una rotura importante en una tubería, gran parte del refrigerante se convertiría en vapor, y el núcleo dejaría de estar refrigerado. Para evitar una pérdida total de refrigeración del núcleo, los reactores están dotados con sistemas de emergencia para refrigeración del núcleo, que empiezan a funcionar automáticamente en cuanto se pierde presión en el circuito primario de refrigeración. En caso de que se produzca una fuga de vapor al edificio de contención desde una tubería rota del circuito primario de refrigeración, se ponen en marcha refrigeradores por aspersión para condensar el vapor y evitar un peligroso aumento de la presión en el edificio.

Accidentes en centrales nucleares:
A pesar de las numerosas medidas de seguridad, en 1979 llegó a producirse un accidente en el RAP de Three Mile Island, cerca de Harrisburg (Pennsylvania, Estados Unidos). Un error de mantenimiento y una válvula defectuosa llevaron a una pérdida de refrigerante. Cuando comenzó el accidente, el sistema de seguridad desconectó el reactor, y el sistema de emergencia para enfriamiento del núcleo empezó a funcionar poco tiempo después según lo prescrito. Pero entonces, como resultado de un error humano, el sistema de refrigeración de emergencia se desconectó, lo que provocó graves daños en el núcleo e hizo que se liberaran productos de fisión volátiles procedentes de la vasija del reactor. Aunque sólo una pequeña cantidad de gas radiactivo salió del edificio de contención (lo que llevó a un ligero aumento de los niveles de exposición en los seres humanos), los daños materiales en la instalación fueron muy grandes, de unos 1.000 millones de dólares o más, y la tensión psicológica a la que se vio sometida la población, especialmente las personas que vivían cerca de la central nuclear, llegó a ser muy grave en algunos casos. La investigación oficial sobre el accidente citó como causas principales del mismo un error de manejo y un diseño inadecuado de la sala de control, y no un simple fallo del equipo. Esto llevó a la entrada en vigor de leyes que exigían a la Comisión de Regulación Nuclear de Estados Unidos que adoptara normas mucho más estrictas para el diseño y la construcción de centrales nucleares, y obligaban a las compañías eléctricas a ayudar a las administraciones de los estados y los condados a preparar planes de emergencia para proteger a la población en caso de que se produjera otro accidente semejante. Desde 1981, las cargas financieras impuestas por estas exigencias han hecho tan difícil la construcción y el funcionamiento de nuevas centrales nucleares que las compañías eléctricas de los estados de Washington, Ohio, New Hampshire e Indiana se vieron obligadas a abandonar centrales parcialmente terminadas después de gastar en ellas miles de millones de dólares. En 1988, se calculaba que el coste acumulado para la economía estadounidense por el cierre de esas centrales, sumado a la finalización de centrales con unos costes muy superiores a los inicialmente previstos, ascendía nada menos que a 100.000 millones de dólares. El 26 de abril de 1986, otro grave accidente alarmó al mundo. Uno de los cuatro reactores nucleares soviéticos de Chernóbil, a unos 130 km al norte de Kíev (en Ucrania), explotó y ardió. Según el informe oficial emitido en agosto, el accidente se debió a que los operadores del reactor realizaron unas pruebas no autorizadas. El reactor quedó fuera de control; se produjeron dos explosiones, la tapa del reactor saltó por los aires y el núcleo se inflamó y ardió a una temperatura de 1.500 °C. Las personas más próximas al reactor recibieron una radiación unas 50 veces superior a la de Three Mile Island, y una nube de lluvia radiactiva se dirigió hacia el Oeste. La nube radiactiva se extendió por Escandinavia y el norte de Europa, según descubrieron observadores suecos el 28 de abril. A diferencia de la mayoría de los reactores de los países occidentales, el reactor de Chernóbil carecía de edificio de contención. Una estructura semejante podría haber impedido que el material saliera del reactor. Murieron más de 30 personas y unas 135.000 fueron evacuadas en un radio de 1.600 kilómetros. El reactor fue sellado con hormigón; en 1988, sin embargo, los otros tres reactores de Chernóbil ya estaban funcionando de nuevo. Tres años más tarde, uno de estos reactores sufrió un incendio y ya no volvió a ponerse en marcha. En 1997 se paró otro de estos reactores, y el 15 de diciembre de 2000 se cerró definitivamente la central al apagarse el único reactor que seguía en funcionamiento. En la central de Vandellòs I, situada en la provincia de Tarragona (España), y con un reactor de tipo grafito-gas, se produjo, el 19 de octubre de 1989, un accidente que se inició por un incendio en un edificio convencional de la central, que generó una serie sucesiva de fallos de sistemas. Pese a todo, se consiguió llevar la central a la situación de parada segura. No se produjo eliminación de CO2 del circuito de refrigeración, ni se produjo daño alguno a las personas que intervinieron en el control de la central.

Reprocesamiento del combustible:
La fase de reprocesamiento del combustible plantea diversos riesgos radiológicos. Uno de ellos es la emisión accidental de productos de fisión en caso de que se produzca una fuga en las instalaciones químicas y los edificios que las albergan. Otro podría ser la emisión rutinaria de niveles bajos de gases radiactivos inertes como el xenón o el criptón. Una planta de reprocesamiento llamada THORP (acrónimo inglés de Planta Térmica de Reprocesamiento de Óxido) empezó a funcionar en Sellafield, en la región de Cumbria (Gran Bretaña), con combustible agotado de centrales británicas y extranjeras. En Francia también se lleva a cabo este proceso, y Japón está desarrollando sus propias plantas de reprocesamiento. Una gran preocupación en relación con el reprocesamiento químico es la separación de plutonio 239, un material utilizado en la fabricación de armas nucleares. En Estados Unidos por ejemplo, no se reprocesa en la actualidad ningún combustible por temor al uso ilegal de este producto. El empleo de medios no tanto técnicos como políticos parece ser la mejor forma de controlar los peligros de su desviación subrepticia —o su producción secreta— para fabricar armas. La mejora de las medidas de seguridad en los puntos sensibles del ciclo del combustible y el aumento de la inspección internacional por parte de la Agencia Internacional de la Energía Atómica (AIEA) parecen las medidas más apropiadas para controlar los peligros de la desviación del plutonio.

Almacenamiento de residuos:
El último paso del ciclo del combustible nuclear, el almacenamiento de residuos, sigue siendo uno de los más polémicos. La cuestión principal no es tanto el peligro actual como el peligro para las generaciones futuras. Muchos residuos nucleares mantienen su radiactividad durante miles de años, más allá de la duración de cualquier institución humana. La tecnología para almacenar los residuos de forma que no planteen ningún riesgo inmediato es relativamente simple. La dificultad estriba por una parte en tener una confianza suficiente en que las generaciones futuras estén bien protegidas y por otra en la decisión política sobre la forma y el lugar para almacenar estos residuos. La mejor solución parece estar en un almacenamiento permanente, pero con posibilidad de recuperación, en formaciones geológicas a gran profundidad. En 1988, el gobierno de Estados Unidos eligió un lugar en el desierto de Nevada con una gruesa sección de rocas volcánicas porosas como el primer depósito subterráneo permanente de residuos nucleares del país.

 
Nagasaki Enola Gay B-29 Enola Gay Trinity - Alamo Gordo
Reactor pruebas Bloqueo vía tren residuos Prueba Eniwetok Atolón Eniwetok

[ Home | Menú Principal | Indice Documentos | Fotos | Cine ]