Fusión nuclear             

 

Tabla de energía enlace nuclear. La cantidad de energía necesaria para extraer un protón o un neutrón de un núcleo atómico depende de la masa del núcleo. Fusión nuclear:
La liberación de energía nuclear puede producirse en el extremo bajo de la curva de energías de enlace (ver tabla) a través de la fusión de dos núcleos ligeros en uno más pesado. La energía irradiada por el Sol se debe a reacciones de fusión de este tipo que se producen en su interior a gran profundidad. A las enormes presiones y temperaturas que existen allí, los núcleos de hidrógeno se combinan a través de una serie de reacciones que equivalen a la ecuación (1) y producen casi toda la energía liberada por el Sol. En estrellas más masivas que el Sol, otras reacciones llevan al mismo resultado. La fusión nuclear artificial se consiguió por primera vez a principios de la década de 1930, bombardeando un blanco que contenía deuterio (el isótopo de hidrógeno de masa 2) con deuterones (núcleos de deuterio) de alta energía mediante un ciclotrón (véase Aceleradores de partículas). Para acelerar el haz de deuterones se necesitaba una gran cantidad de energía, de la que la mayoría aparecía como calor en el blanco. Eso hacía que no se produjera una energía útil neta. En la década de 1950 se produjo la primera liberación a gran escala de energía de fusión, aunque incontrolada, en las pruebas de armas termonucleares realizadas por Estados Unidos, la URSS, Gran Bretaña y Francia. Una liberación tan breve e incontrolada no puede emplearse para la producción de energía eléctrica. En las reacciones de fisión estudiadas anteriormente, el neutrón, que no tiene carga eléctrica, puede acercarse fácilmente a un núcleo fisionable (por ejemplo, uranio 235) y reaccionar con él. En una reacción de fusión típica, en cambio, cada uno de los dos núcleos que reaccionan tiene una carga eléctrica positiva, y antes de que puedan unirse hay que superar la repulsión natural que ejercen entre sí, llamada repulsión de Coulomb. Esto ocurre cuando la temperatura del gas es suficientemente alta, entre 50 y 100 millones de grados centígrados. En un gas formado por los isótopos pesados del hidrógeno, deuterio y tritio, a esa temperatura se produce la reacción de fusión que libera unos 17,6 MeV por cada fusión. La energía aparece en un primer momento como energía cinética del núcleo de helio 4 y el neutrón, pero pronto se convierte en calor en el gas y los materiales próximos. Si la densidad del gas es suficiente —a esas temperaturas basta una densidad correspondiente a unas 10-5 atmósferas, casi un vacío— el núcleo de helio 4 puede transferir su energía al gas hidrógeno circundante, con lo que mantiene la temperatura elevada y permite que se produzca una reacción de fusión en cadena. En esas condiciones se dice que se ha producido la “ignición nuclear”. Los problemas básicos para alcanzar las condiciones para la fusión nuclear útil son: 1) calentar el gas a temperaturas tan altas; 2) confinar una cantidad suficiente de núcleos durante un tiempo lo bastante largo para permitir la liberación de una energía mayor que la necesaria para calentar y confinar el gas. Un problema importante que surge después es la captura de esta energía y su conversión en electricidad. A temperaturas superiores a los 100.000 °C, todos los átomos de hidrógeno están ionizados. El gas está formado por un conjunto eléctricamente neutro de núcleos con carga positiva y electrones libres con carga negativa. Este estado de la materia se denomina plasma. Los materiales ordinarios no pueden contener un plasma lo suficientemente caliente para que se produzca la fusión. El plasma se enfriaría muy rápidamente, y las paredes del recipiente se destruirían por las altas temperaturas. Sin embargo, como el plasma está formado por núcleos y electrones cargados, que se mueven en espiral alrededor de líneas de campo magnético intensas, el plasma puede contenerse en una zona de campo magnético de la forma apropiada. Para que un dispositivo de fusión resulte útil, la energía producida debe ser mayor que la energía necesaria para confinar y calentar el plasma. Para que esta condición se cumpla, el producto del tiempo de confinamiento, t, y la densidad del plasma, n, debe superar el valor 1014. La relación t n = 1014 se denomina criterio de Lawson. Desde 1950 se han llevado a cabo numerosos proyectos para la confinación magnética de plasma en Estados Unidos, la antigua Unión Soviética, Gran Bretaña, Japón y otros países. Se han observado reacciones termonucleares, pero el número de Lawson fue pocas veces superior a 1012. Sin embargo, uno de los dispositivos —el tokamak, sugerido originalmente en la URSS por Ígor Tamm y Andréi Sajárov— comenzó a arrojar resultados prometedores a principios de la década de 1960. La cámara de confinamiento de un tokamak tiene forma toroidal, con un diámetro interior de aproximadamente 1 m y un diámetro exterior de alrededor de 3 m. En esta cámara se establece un campo magnético toroidal de unos 5 teslas mediante grandes electroimanes. La intensidad de este campo es unas 100.000 veces mayor que la del campo magnético de la Tierra en la superficie del planeta. Las bobinas que rodean la cámara inducen en el plasma una corriente longitudinal de varios millones de amperios. Las líneas de campo magnético resultantes son espirales dentro de la cámara, que confinan el plasma. Después de que en varios laboratorios funcionaran con éxito tokamaks pequeños, a principios de la década de 1980 se construyeron dos dispositivos de gran tamaño, uno en la Universidad de Princeton, en Estados Unidos, y otro en la URSS. En el tokamak, el plasma alcanza una temperatura elevada por el calentamiento resistivo producido por la inmensa corriente toroidal, y en los nuevos aparatos grandes, un calentamiento adicional mediante la inyección de haces neutrales debería producir condiciones de ignición. Otra posible vía para obtener energía de la fusión es el confinamiento inercial. En esta técnica, el combustible (tritio o deuterio) está contenido en una pequeña bolita que se bombardea desde distintas direcciones con un haz láser de pulsos. Esto provoca la implosión de la bolita y desencadena una reacción termonuclear que causa la ignición del combustible. Los avances en la investigación de la fusión son prometedores, pero probablemente hagan falta décadas para desarrollar sistemas prácticos que produzcan más energía de la que consumen. Además, las investigaciones son sumamente costosas. Sin embargo, en los primeros años de la década de 1990 se realizaron algunos avances. En 1991, se generó por primera vez en la historia una potencia significativa (unos 1,7 MW) a partir de la fusión nuclear controlada, en el laboratorio de la Cámara Toroidal Conjunta Europea (JET, siglas en inglés), en Gran Bretaña. En diciembre de 1993, los investigadores de la Universidad de Princeton emplearon el Reactor Experimental de Fusión Tokamak para producir una reacción de fusión controlada que generó 5,6 megavatios. No obstante, tanto el JET como el Reactor Experimental de Fusión Tokamak consumieron más energía de la que produjeron durante su funcionamiento. Si la energía de fusión llega a ser practicable, ofrecería las siguientes ventajas: 1) una fuente ilimitada de combustible, el deuterio procedente de los océanos; 2) imposibilidad de un accidente en el reactor, ya que la cantidad de combustible en el sistema es muy pequeña, y 3) residuos mucho menos radiactivos y más sencillos de manejar que los procedentes de sistemas de fisión.

 
Nagasaki Enola Gay B-29 Enola Gay Trinity - Alamo Gordo
Reactor pruebas Bloqueo vía tren residuos Prueba Eniwetok Atolón Eniwetok

[ Home | Menú Principal | Indice Documentos | Fotos | Cine ]