Documentos | Sociedad | Economía | Historia | Letras | Filosofía | Ser

 

 

     
 

Sistema nervioso:
Conjunto de los elementos que en los organismos animales están relacionados con la recepción de los estímulos, la transmisión de los impulsos nerviosos o la activación de los mecanismos de los músculos. En el sistema nervioso, la recepción de los estímulos es la función de unas células sensitivas especiales, los receptores. Los elementos conductores son unas células llamadas neuronas que pueden desarrollar una actividad lenta y generalizada o pueden ser unas unidades conductoras rápidas, de gran eficiencia. La respuesta específica de la neurona se llama impulso nervioso; ésta y su capacidad para ser estimulada, hacen de esta célula una unidad de recepción y emisión capaz de transferir información de una parte a otra del organismo. 2.1 Célula nerviosa Cada célula nerviosa o neurona consta de una porción central o cuerpo celular, que contiene el núcleo y una o más estructuras denominadas axones y dendritas. Estas últimas son unas extensiones bastante cortas del cuerpo neuronal y están implicadas en la recepción de los estímulos. Por contraste, el axón suele ser una prolongación única y alargada, muy importante en la transmisión de los impulsos desde la región del cuerpo neuronal hasta otras células. Véase Neurofisiología. 2.2 Sistemas simples Aunque todos los animales pluricelulares tienen alguna clase de sistema nervioso, la complejidad de su organización varía de forma considerable entre los diferentes tipos de organismos. En los animales simples, como los cnidarios, las células nerviosas forman una red capaz de mediar respuestas estereotipadas. En los animales más complejos, como crustáceos, insectos y arañas, el sistema nervioso es más complicado. Los cuerpos celulares de las neuronas están organizados en grupos llamados ganglios, que se interconectan entre sí formando las cadenas ganglionares. Estas cadenas están presentes en todos los vertebrados, en los que representan una parte especial del sistema nervioso relacionada en especial con la regulación de la actividad del corazón, las glándulas y los músculos involuntarios.

Sistemas de los vertebrados:
Los animales vertebrados tienen una columna vertebral y un cráneo en los que se aloja el sistema nervioso central, mientras que el sistema nervioso periférico se extiende a través del resto del cuerpo. La parte del sistema nervioso localizada en el cráneo es el cerebro y la que se encuentra en la columna vertebral es la médula espinal. El cerebro y la médula espinal se comunican por una abertura situada en la base del cráneo y están también en contacto con las demás zonas del organismo a través de los nervios. La distinción entre sistema nervioso central y periférico se basa en la diferente localización de las dos partes, íntimamente relacionadas, que constituyen el primero. Algunas de las vías de los cuerpos neuronales conducen señales sensitivas y otras vías conducen respuestas musculares o reflejos, como los causados por el dolor. En la piel se encuentran unas células especializadas, llamadas receptores, de diversos tipos, sensibles a diferentes estímulos; captan la información (como por ejemplo, la temperatura, la presencia de un compuesto químico, la presión sobre una zona del cuerpo), y la transforman en una señal eléctrica que utiliza el sistema nervioso. Las terminaciones nerviosas libres también pueden recibir estímulos: son sensibles al dolor y son directamente activadas por éste. Estas neuronas sensitivas, cuando son activadas mandan los impulsos hacia el sistema nervioso central y transmiten la información a otras neuronas, llamadas neuronas motoras, cuyos axones se extienden de nuevo hacia la periferia. Por medio de estas últimas células, los impulsos se dirigen a las terminaciones motoras de los músculos, los excitan y originan su contracción y el movimiento adecuado. Así, el impulso nervioso sigue una trayectoria que empieza y acaba en la parte periférica del cuerpo. Muchas de las acciones del sistema nervioso se pueden explicar basándonos en estas cadenas de células nerviosas interconectadas que, al ser estimuladas en un extremo, son capaces de ocasionar un movimiento o secreción glandular en el otro.

La red nerviosa:
Los nervios craneales se extienden desde la cabeza y el cuello hasta el cerebro pasando a través de las aberturas del cráneo; los nervios espinales o medulares están asociados con la médula espinal y atraviesan las aberturas de la columna vertebral. Ambos tipos de nervios se componen de un gran número de axones que transportan los impulsos hacia el sistema nervioso central y llevan los mensajes hacia el exterior. Las primeras vías se llaman aferentes y las últimas eferentes. En función de la parte del cuerpo que alcanzan, a los impulsos nerviosos aferentes se les denomina sensitivos y a los eferentes, somáticos o motores viscerales. La mayoría de los nervios son mixtos, es decir, están constituidos por elementos motores y sensitivos. Los nervios craneales y espinales aparecen por parejas y, en la especie humana, su número es 12 y 31 respectivamente. Los pares de nervios craneales se distribuyen por las regiones de la cabeza y el cuello, con una notable excepción: el par X o nervio vago, que además de inervar órganos situados en el cuello, alcanza otros del tórax y el abdomen. La visión, la audición, el sentido del equilibrio y el gusto están mediados por los pares de nervios craneales II, VIII y VII, respectivamente. De los nervios craneales también dependen las funciones motoras de la cabeza, los ojos, la cara, la lengua, la laringe y los músculos que funcionan en la masticación y la deglución. Los nervios espinales salen desde las vértebras y se distribuyen por las regiones del tronco y las extremidades. Están interconectados, formando dos plexos: el braquial, que se dirige a las extremidades superiores, y el lumbar que alcanza las inferiores. 2.5 Sistema nervioso vegetativo Existen grupos de fibras motoras que llevan los impulsos nerviosos a los órganos que se encuentran en las cavidades del cuerpo, como el estómago y los intestinos (vísceras). Estas fibras constituyen el sistema nervioso vegetativo que se divide en dos secciones con una función más o menos antagónica y con unos puntos de origen diferentes en el sistema nervioso central. Las fibras del sistema nervioso vegetativo simpático se originan en la región media de la médula espinal, unen la cadena ganglionar simpática y penetran en los nervios espinales, desde donde se distribuyen de forma amplia por todo el cuerpo. Las fibras del sistema nervioso vegetativo parasimpático se originan por encima y por debajo de las simpáticas, es decir, en el cerebro y en la parte inferior de la médula espinal. Estas dos secciones controlan las funciones de los sistemas respiratorio, circulatorio, digestivo y urogenital.

ALTERACIONES DEL SISTEMA NERVIOSO:
La neurología se encarga del estudio y el tratamiento de las alteraciones del sistema nervioso y la psiquiatría de las perturbaciones de la conducta de naturaleza funcional. La división entre estas dos especialidades médicas no está definida con claridad debido a que las alteraciones neurológicas muestran con frecuencia síntomas orgánicos y mentales. Para la discusión de enfermedad mental funcional, véase Enfermedades mentales. Las alteraciones del sistema nervioso comprenden malformaciones genéticas, intoxicaciones, defectos metabólicos, alteraciones vasculares, inflamaciones, degeneración y tumores, y están relacionadas con las células nerviosas o sus elementos de sostén. Entre las causas más comunes de la parálisis y de otras complicaciones neurológicas se encuentran las alteraciones vasculares, tales como la hemorragia cerebral y otras formas de apoplejía. Algunas enfermedades manifiestan una distribución por edad y geográfica peculiar; por ejemplo, la esclerosis múltiple degenerativa del sistema nervioso es común en las zonas templadas, pero rara en los trópicos. El sistema nervioso es susceptible a las infecciones provocadas por una gran variedad de bacterias, parásitos y virus. Por ejemplo, la meningitis o la inflamación de las meninges (las membranas que recubren el cerebro y la médula espinal) puede originarse por numerosos agentes; sin embargo, la infección por un virus específico causa la rabia. Algunos virus que provocan dolencias neurológicas afectan sólo a ciertas partes del sistema nervioso; es el caso del virus que origina la poliomielitis que suele atacar a la médula espinal; el que causa la encefalitis afecta al cerebro. Las inflamaciones del sistema nervioso se denominan en función de la parte a la que afectan. Así, la mielitis es la inflamación de la médula espinal y la neuritis la de un nervio. Estas alteraciones pueden producirse no sólo por infecciones, sino también por intoxicación, alcoholismo o lesiones. Los tumores que se originan en el sistema nervioso suelen componerse de tejido meníngeo o de células de la neuroglia (tejido de sostén), dependiendo de la parte específica que esté afectada. Sin embargo, otros tipos de tumores pueden sufrir metástasis (propagarse) o invadir el sistema nervioso. Véase Cáncer (medicina). En ciertas alteraciones, como la neuralgia, la migraña y la epilepsia puede no existir ninguna evidencia de daño orgánico. Otra alteración, la parálisis cerebral, está asociada con una lesión cerebral producida antes, durante o después del nacimiento. (Encarta)


Regeneración de neuronas.
Durante más de siete años, la bióloga María Llorens ha recopilado cuidadosamente trocitos de cerebro de personas fallecidas. Algunas no sufrían ninguna enfermedad neurodegenerativa y otras tenían indicios claros de alzhéimer. Un neuropatólogo extrajo de cada cerebro el hipocampo, el epicentro de la memoria, tomó muestras de un centímetro de lado, aplicó productos químicos para conservarlas sin dañarlas y se las envió a Llorens. Ella las cortó en finísimas láminas de cinco micras para poder observarlas al microscopio. En total, consiguió muestras de 58 personas que eran como oro puro, pues este tipo de material biológico es escaso debido al reducido número de cuerpos donados a la ciencia. Gracias al estudio de esos cerebros el grupo de investigación de Llorens en el Centro de Biología Molecular Severo Ochoa ha confirmado que los humanos generamos neuronas nuevas a lo largo de toda la vida. Hasta personas cercanas a los 90 años producen decenas de miles de células nerviosas nuevas que son esenciales para la memoria y el aprendizaje. El estudio, publicado hoy en Nature Medicine, es una nueva y contundente entrega en una polémica científica que se ha intensificado recientemente: ¿nacemos con un número determinado de neuronas y las vamos perdiendo a lo largo de la vida o hay regeneración? La respuesta tiene importantes implicaciones tanto para el funcionamiento básico de la mente como para abordar sus enfermedades, especialmente las degenerativas como el párkinson o el alzhéimer. La regeneración neuronal —neurogénesis— en el hipocampo se ha observado en ratones y en primates. Desde 1998, varios estudios han demostrado con métodos diferentes que también los humanos producen neuronas nuevas en el hicocampo. Uno de los más originales fue Jonás Frisén, del Instituto Karolinska, que usó isótopos del carbono 14 liberado por bombas nucleares detonadas durante la Guerra Fría para calcular la edad de las neuronas en muestras cerebrales de 55 personas fallecidas. El equipo observó que el giro dentado, parte del hipocampo, contenía cientos de neuronas nacidas después de las explosiones cuando las personas ya eran adultas La polémica llegó con Arturo Álvarez-Buylla, premio Príncipe de Asturias en 2011 por su estudio de la neurogénesis. Su equipo intentó demostrar la existencia de neuronas jóvenes en muestras cerebrales de 59 personas de diferentes edades, desde fetos a adultos. En contra de lo que esperaba, sus resultados, publicados el año pasado, mostraron que la producción de neuronas nuevas se desploma tras el primer año de vida y desaparece al final de la infancia. “Desde entonces este campo se sumió en el desconcierto”, reconoce Llorens. Su estudio ha analizado el giro dentado de 13 personas fallecidas entre los 43 y los 87 años que no sufrían enfermedades neurológicas. Los científicos aplicaron a las muestras cuatro anticuerpos que se unen a la doblecortina, una proteína de neuronas en desarrollo. Así, se detectaron unas 30.000 neuronas jóvenes por milímetro cúbico de cerebro en una zona del giro dentado conocido como capa granular. Las neuronas jóvenes suponen un 4% del total de neuronas presentes en esta zona del hipocampo, una cantidad “sorprendentemente alta”, reconoce Llorens. El trabajo detecta una ralentización de la producción de nuevas neuronas según avanza la edad, por lo que las personas más jóvenes tienden a tener más que las más mayores. “Las neuronas granulares son las primeras que reciben un estímulo nervioso llegado de otras zonas del cerebro y permiten que sea procesado y enviado a otras áreas, por lo que tiene sentido que sean las que se regeneran a lo largo de la vida”, explica Llorens. También se ha analizado el encéfalo de 45 personas con alzhéimer. En las fases más tempranas de la enfermedad, cuando ni siquiera se detectan agregaciones de proteínas típicas de la dolencia, existen unas 20.000 neuronas jóvenes por milímetro cúbico, un 33% menos que en las personas sanas, según el estudio. Los enfermos más avanzados tienen apenas 11.000 (un 63% menos), y representan solo el 1,5% del área del hipocampo analizada. Los investigadores especulan con que este tipo de neuronas podría funcionar como un método de diagnóstico temprano del alzhéimer—para lo que antes habría que desarrollar un método no invasivo para usarlo en personas vivas sin causar daños— o incluso ser la base de una intervención terapéutica para aumentar el número de neuronas regeneradas. “La memoria y la capacidad de aprendizaje están disminuidas por la enfermedad de alzhéimer y los resultados que hemos obtenido lo apoyan y explican un posible mecanismo”, explica Jesús Ávila, investigador del Severo Ochoa y coautor del trabajo, en el que también han participado investigadores del CSIC, el Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, el banco de cerebros de la Fundación CIEN, y la Universidad Europea de Madrid. El tratamiento químico que se aplica a las muestras cerebrales una vez fallecida la persona puede explicar por qué otros grupos no veían neurogénesis en adultos. Cuanto más tiempo se dejan las muestras en paraformaldehido para fijarlas, menos neuronas en estado de maduración se detectan. El estudio muestra que en el cerebro de una misma persona se pueden detectar miles de neuronas en maduración o no ver ninguna cuando la muestra se ha dejado fijando más de 12 horas. Esto puede explicar por qué Álvarez-Buylla no las encontraba en las muestras de adultos. El neurobiólogo mexicano Álvarez-Buylla considera que la cuestión no está zanjada. "Nosotros estudiamos cerebros que habían estado fijados menos de 12 horas y no encontramos neuronas, aunque usamos un anticuerpo diferente". "Las neuronas inmaduras que ellos detectan son muy grandes, parecen de hecho totalmente maduras por el tamaño, y sorprende que bajo ellas no haya otra capa con células inmaduras más pequeñas. Este es un problema bien complicado que se remonta más de un siglo, a la época de Ramón y Cajal. Tal vez necesitemos métodos alternativos para poder zanjar la cuestión", resalta. El año pasado, Maura Boldrini, psiquiatra de la Universidad de Columbia (EE UU), detectó regeneración neuronal en personas de 14 a 79 años. Aunque veían un declive con la edad, el estudio demostraba que personas mayores sin enfermedades neurológicas conservan esta capacidad regenerativa y especulaba que tal vez este sea un mecanismo que protege la mente de los achaques de la edad. “Este estudio aporta una confirmación muy importante”, opina la psiquiatra. Boldrini estudia la conexión entre neurogénesis y depresión. “Hemos demostrado tanto en ratones como en humanos que los antidepresivos aumentan la producción de neuronas nuevas en el hipocampo”, explica. “Este tipo de neuronas están involucradas en la respuesta emocional al estrés y la memoria, dos capacidades que se ven mermadas con la depresión. A su vez estas neuronas conectan con la amígdala, que controla el miedo y la ansiedad, y a su vez esta conecta con otros puntos encargados de la toma de decisiones, capacidades que también se ven afectadas por la depresión”, resalta la psiquiatra. Para Juan Carlos Portilla, vocal de la Sociedad Española de Neurología, "este trabajo despeja las dudas que habían planteado estudios anteriores, que no eran tan detallados metodológicamente". "Una de las cosas más interesantes es que desvela un nuevo mecanismo patogénico de la enfermedad de alzhéimer", destaca. (Nuño Domínguez, 2019)

 

 

[ Inicio | DOCS | Sociedad | Economía | Historia | SER | Literatura | Filosofía | Naturaleza | Africa ]