Documentos | Sociedad | Economía | Historia | Letras | Filosofía | Ser

 

 

     
 

Sangre:
Sustancia líquida que circula por las arterias y las venas del organismo. La sangre es roja brillante o escarlata cuando ha sido oxigenada en los pulmones y pasa a las arterias; adquiere una tonalidad más azulada cuando ha cedido su oxígeno para nutrir los tejidos del organismo y regresa a los pulmones a través de las venas y de los pequeños vasos denominados capilares. En los pulmones, la sangre cede el dióxido de carbono que ha captado procedente de los tejidos, recibe un nuevo aporte de oxígeno e inicia un nuevo ciclo. Este movimiento circulatorio de sangre tiene lugar gracias a la actividad coordinada del corazón, los pulmones y las paredes de los vasos sanguíneos.

COMPOSICIÓN DE LA SANGRE:
La sangre está formada por un líquido amarillento denominado plasma, en el que se encuentran en suspensión millones de células que suponen cerca del 45% del volumen de sangre total. Tiene un olor característico y una densidad relativa que oscila entre 1,056 y 1,066. En el adulto sano el volumen de la sangre es una onceava parte del peso corporal, de 4,5 a 6 litros. Una gran parte del plasma es agua, medio que facilita la circulación de muchos factores indispensables que forman la sangre. Un milímetro cúbico de sangre humana contiene unos cinco millones de corpúsculos o glóbulos rojos, llamados eritrocitos o hematíes; entre 5.000 y 10.000 corpúsculos o glóbulos blancos que reciben el nombre de leucocitos, y entre 200.000 y 300.000 plaquetas, denominadas trombocitos. La sangre también transporta muchas sales y sustancias orgánicas disueltas. 2.1 Eritrocitos Los glóbulos rojos, o células rojas de la sangre, tienen forma de discos redondeados, bicóncavos y con un diámetro aproximado de 7,5 micras. En el ser humano y la mayoría de los mamíferos los eritrocitos maduros carecen de núcleo. En algunos vertebrados son ovales y nucleados. La hemoglobina, una proteína de las células rojas de la sangre, es el pigmento sanguíneo especial más importante y su función es el transporte de oxígeno desde los pulmones a las células del organismo, donde capta dióxido de carbono que conduce a los pulmones para ser eliminado hacia el exterior. 2.2 Leucocitos Las células o glóbulos blancos de la sangre son de dos tipos principales: los granulosos, con núcleo multilobulado, y los no granulosos, que tienen un núcleo redondeado. Los leucocitos granulosos o granulocitos incluyen los neutrófilos, que fagocitan y destruyen bacterias; los eosinófilos, que aumentan su número y se activan en presencia de ciertas infecciones y alergias, y los basófilos, que segregan sustancias como la heparina, de propiedades anticoagulantes, y la histamina que estimula el proceso de la inflamación. Los leucocitos no granulosos están formados por linfocitos y un número más reducido de monocitos, asociados con el sistema inmunológico. Los linfocitos desempeñan un papel importante en la producción de anticuerpos y en la inmunidad celular. Los monocitos digieren sustancias extrañas no bacterianas, por lo general durante el transcurso de infecciones crónicas. 2.3 Plaquetas Las plaquetas de la sangre son cuerpos pequeños, ovoideos, sin núcleo, con un diámetro mucho menor que el de los eritrocitos. Los trombocitos o plaquetas se adhieren a la superficie interna de la pared de los vasos sanguíneos en el lugar de la lesión y ocluyen el defecto de la pared vascular. Conforme se destruyen, liberan agentes coagulantes que conducen a la formación local de trombina que ayuda a formar un coágulo, el primer paso en la cicatrización de una herida. 2.4 Recuento sanguíneo La técnica de laboratorio llamada recuento sanguíneo completo (RSC) es un indicador útil de enfermedad y salud. Una muestra de sangre determinada con precisión se diluye de forma automática y las células se cuentan con un detector óptico o electrónico. El empleo de ajustes o diluyentes distintos, permite realizar el recuento de los glóbulos rojos, los blancos o las plaquetas. Un RSC también incluye la clasificación de los glóbulos blancos en categorías, lo que se puede realizar por la observación al microscopio de una muestra teñida sobre un portaobjetos, o de forma automática utilizando una de las diversas técnicas que existen.

Plasma:
El plasma es una sustancia compleja; su componente principal es el agua. También contiene proteínas plasmáticas, sustancias inorgánicas (como sodio, potasio, cloruro de calcio, carbonato y bicarbonato), azúcares, hormonas, enzimas, lípidos, aminoácidos y productos de degradación como urea y creatinina. Todas estas sustancias aparecen en pequeñas cantidades. Entre las proteínas plasmáticas se encuentran la albúmina, principal agente responsable del mantenimiento de la presión osmótica sanguínea y, por consiguiente, controla su tendencia a difundirse a través de las paredes de los vasos sanguíneos; una docena o más de proteínas, como el fibrinógeno y la protrombina, que participan en la coagulación; aglutininas, que producen las reacciones de aglutinación entre muestras de sangre de tipos distintos y la reacción conocida como anafilaxis, una forma de shock alérgico, y globulinas de muchos tipos, incluyendo los anticuerpos, que proporcionan inmunidad frente a muchas enfermedades. Otras proteínas plasmáticas importantes actúan como transportadores hasta los tejidos de nutrientes esenciales como el cobre, el hierro, otros metales y diversas hormonas. La primera separación de las proteínas plasmáticas para su estudio individual se llevó a cabo en la década de 1920. Durante la II Guerra Mundial se consiguió perfeccionar la técnica, lo que permitió el empleo de fracciones individuales. Algunos de los resultados de este trabajo incluyen el uso de albúmina sérica como un sustituto de la sangre o el plasma en las transfusiones, el empleo de gammaglobulinas para una protección a corto plazo frente a enfermedades como sarampión y hepatitis, y la utilización de globulina antihemofílica para el tratamiento de la hemofilia.

FORMACIÓN DE LA SANGRE Y REACCIONES:
Los eritrocitos se forman en la médula ósea y tras una vida media de 120 días son destruidos y eliminados por el bazo. En cuanto a las células blancas de la sangre, los leucocitos granulosos o granulocitos se forman en la médula ósea; los linfocitos en el timo, en los ganglios linfáticos y en otros tejidos linfáticos. Las plaquetas se producen en la médula ósea. Todos estos componentes de la sangre se agotan o consumen cada cierto tiempo y, por tanto, deben ser reemplazados con la misma frecuencia. Los componentes del plasma se forman en varios órganos del cuerpo, incluido el hígado, responsable de la síntesis de albúmina y fibrinógeno, que libera sustancias tan importantes como el sodio, el potasio y el calcio. Las glándulas endocrinas producen las hormonas transportadas en el plasma. Los linfocitos y las células plasmáticas sintetizan ciertas proteínas y otros componentes proceden de la absorción que tiene lugar en el tracto intestinal.

Coagulación:
Una de las propiedades más notables de la sangre es su capacidad para formar coágulos, o coagular, cuando se extrae del cuerpo. Dentro del organismo un coágulo se forma en respuesta a una lesión tisular, como un desgarro muscular, un corte o un traumatismo penetrante. En los vasos sanguíneos la sangre se encuentra en estado líquido, poco después de ser extraída adquiere un aspecto viscoso y más tarde se convierte en una masa gelatinosa firme. Después esta masa se separa en dos partes: un coágulo rojo firme que flota libre en un líquido transparente rosado que se denomina suero. Un coágulo está formado casi en su totalidad por eritrocitos encerrados en una red de finas fibrillas o filamentos constituidos por una sustancia denominada fibrina. Esta sustancia no existe como tal en la sangre pero se crea, durante el proceso de la coagulación, por la acción de la trombina, enzima que estimula la conversión de una de las proteínas plasmáticas, el fibrinógeno, en fibrina. La trombina no está presente en la sangre circulante. Ésta se forma a partir de la protrombina, otra proteína plasmática, en un proceso complejo que implica a las plaquetas, ciertas sales de calcio, sustancias producidas por los tejidos lesionados y el contacto con las superficies accidentadas. Si existe algún déficit de estos factores la formación del coágulo es defectuosa. La adición de citrato de sodio elimina los iones de calcio de la sangre y por consiguiente previene la formación de coágulos. La carencia de vitamina K hace imposible el mantenimiento de cantidades adecuadas de protrombina en la sangre. Ciertas enfermedades pueden reducir la concentración sanguínea de varias proteínas de la coagulación o de las plaquetas.

Reacciones homeostáticas:
Ciertas características de la sangre se mantienen dentro de estrechos límites gracias a la existencia de procesos regulados con precisión. Por ejemplo, la alcalinidad de la sangre se mantiene en un intervalo constante (pH entre 7,38 y 7,42) de manera que si el pH desciende a 7,0 (el del agua pura), el individuo entra en un coma acidótico que puede ser mortal; por otro lado, si el pH se eleva por encima de 7,5 (el mismo que el de una solución que contiene una parte de sosa cáustica por 50 millones de partes de agua), el individuo entra en una alcalosis tetánica y es probable que fallezca. De igual manera, un descenso de la concentración de glucosa en sangre (glucemia), en condiciones normales del 0,1% a menos del 0,05%, produce convulsiones. Cuando la glucemia se eleva de forma persistente y se acompaña de cambios metabólicos importantes, suele provocar un coma diabético (véase Diabetes mellitus). La temperatura de la sangre no suele variar más de 1 ºC dentro de un intervalo medio entre 36,3 y 37,1 ºC, la media normal es de 37 ºC. Un aumento de la temperatura de 4 ºC es señal de enfermedad grave, mientras que una elevación de 6 ºC suele causar la muerte.

ENFERMEDADES SANGUÍNEAS:
Los trastornos de la sangre proceden de cambios anormales en su composición. La reducción anómala del contenido de hemoglobina o del número de glóbulos rojos, conocida como anemia, se considera más un síntoma que una enfermedad y sus causas son muy variadas. Se cree que la causa más frecuente es la pérdida de sangre o hemorragia. La anemia hemolítica, un aumento de la destrucción de glóbulos rojos, puede estar producida por diversas toxinas o por un anticuerpo contra los eritrocitos. Una forma de leucemia que afecta a los bebés al nacer o poco antes del nacimiento es la eritroblastosis fetal (véase Factor Rh). La anemia puede ser también consecuencia de un descenso de la producción de hematíes que se puede atribuir a una pérdida de hierro, a un déficit de vitamina B12, o a una disfunción de la médula ósea. Por último, existe un grupo de anemias originada por defectos hereditarios en la producción de glóbulos rojos (hemoglobina). Estas anemias comprenden varios trastornos hereditarios en los que los eritrocitos carecen de algunas de las enzimas necesarias para que la célula utilice la glucosa de forma eficaz. La formación de hemoglobina anómala es característica de las enfermedades hereditarias que reciben el nombre de anemia de células falciformes y talasemia mayor. Ambas son enfermedades graves que pueden ser mortales en la infancia. El aumento del número de eritrocitos circulantes se denomina policitemia: puede ser un trastorno primario o consecuencia de una disminución de la oxigenación de la sangre o hipoxia. La hipoxia aguda se produce con más frecuencia en enfermedades pulmonares avanzadas, en ciertos tipos de cardiopatías congénitas y a altitudes elevadas. La leucemia se acompaña de una proliferación desordenada de leucocitos. Hay varias clases de leucemia, cuyas características dependen del tipo de célula implicada. El déficit de cualquiera de los factores necesarios para la coagulación de la sangre provoca hemorragias. El descenso del número de plaquetas recibe el nombre de trombocitopenia; la disminución del factor VIII de la coagulación da lugar a la hemofilia A (hemofilia clásica); el descenso del factor IX de la coagulación es responsable de la hemofilia B, conocida como enfermedad de Christmas. Diversas enfermedades hemorrágicas, como la hemofilia, son hereditarias. Hay preparados que incluyen concentrados de varios factores de la coagulación para el tratamiento de algunos de estos trastornos. En 1984 los científicos desarrollaron una técnica de ingeniería genética para la fabricación de factor VIII, un factor de la coagulación de la sangre de vital importancia para las víctimas de la forma de hemofilia más frecuente. Aunque la formación de un coágulo es un proceso normal, se convierte a veces en un fenómeno patológico que representa incluso una amenaza mortal. Por ejemplo, en los pacientes hospitalizados durante largos periodos a veces se forman coágulos en las venas importantes de las extremidades inferiores. Si estos coágulos, o trombos, se desplazan hacia los pulmones pueden causar la muerte como consecuencia de un embolismo. En muchos casos dichos trombos venosos se disuelven con una combinación de fármacos que previenen la coagulación y lisan los coágulos. Los anticoagulantes incluyen la heparina, compuesto natural que se prepara a partir de pulmones o hígados de animales, y las sustancias químicas sintéticas dicumarol y warfarina. Los fármacos que lisan los coágulos, denominados trombolíticos, incluyen las enzimas uroquinasa y estreptoquinasa, y el activador tisular del plasminógeno (TPA), un producto de ingeniería genética. Se piensa que la interacción de los trombocitos con los depósitos de lípidos que aparecen en la enfermedad cardiaca ateroesclerótica contribuye a los infartos de miocardio. Los compuestos como la aspirina y la sulfinpirazona, que inhiben la actividad plaquetaria, pueden disminuir los infartos de miocardio en personas con enfermedad ateroesclerótica. Véase también Tensión arterial; Aparato circulatorio; Pulso. (Encarta)


Análisis de sangre:
Conjunto de técnicas y procedimientos de laboratorio mediante los cuales se determinan los componentes de la sangre y su cantidad. El análisis puede tener como objetivo la valoración de algunos elementos o la descripción de un cuadro clínico concreto. Un análisis de sangre general, por ejemplo, puede efectuarse periódicamente como medida de control del estado de salud, o antes de que una paciente afronte un embarazo, con el fin de apreciar eventuales disfunciones. Un análisis de sangre específico puede consistir, por ejemplo, sólo en la determinación de la glucemia (concentración de glucosa en sangre), para indagar las modalidades de absorción de los azúcares en el paciente y revelar una posible diabetes.

EXTRACCIÓN:
Para la elaboración del análisis de sangre es necesario proceder a la toma de una muestra mediante punción en la yema de un dedo o aspiración de la sangre, mediante jeringuilla, de una vena del brazo. Por lo común, la muestra suele tomarse cuando el paciente ha guardado ayuno durante unas horas; aunque en condiciones particulares -por ejemplo, para la valoración del metabolismo de la glucosa- pueden recogerse diversas muestras a distintas horas. Según los parámetros que deben ser valorados, la cantidad de sangre extraída puede variar desde menos de 1 cm3 a 300-400 cm3. La investigación bioquímica de la muestra de sangre suele efectuarse antes de que se separen la parte plasmática y la corpuscular. Algunos análisis se efectúan con aparatos automáticos, mientras que otros los realiza un analista, que puede ser un hematólogo, un patólogo o también un técnico de laboratorio especializado.

PRINCIPALES PARÁMETROS EXAMINADOS:
Un importante parámetro evaluado mediante el análisis de sangre es el hemograma (examen hemocromocitométrico), con el que se establece la cantidad de glóbulos rojos, glóbulos blancos y plaquetas (elementos corpusculares de la sangre), además de descubrirse eventuales anomalías morfológicas de tales células. En particular, puesto que existen diversos tipos de glóbulos blancos, el análisis hemocromocitométrico establece no sólo el número global, sino también la cantidad de cada tipo y su porcentaje sobre el total (fórmula leucocitaria). Otro examen importante es el que determina la cantidad de hemoglobina; éste se realiza mediante técnica colorimétrica aplicada a una muestra de sangre en la que se ha practicado previamente la hemolisis, es decir, la ruptura de las membranas de los glóbulos rojos, de modo que la hemoglobina pueda salir de ellos. El examen cualitativo (morfológico) de las células de la sangre se efectúa con una muestra depositada sobre un vidrio e interpretada al microscopio por un técnico. Otros parámetros hemáticos medidos en el análisis de sangre son: la funcionalidad de la coagulación de la sangre; el grupo sanguíneo; la concentración de algunas sustancias, como la glucosa (glucemia); el nitrógeno (azotemia); la bilirrubina (bilirrubinemia); el colesterol (colesterolemia); la concentración de iones y electrones, como el calcio (calcemia), el fósforo (fosforemia), el cloro (cloremia), el potasio (potasemia) y el sodio (natremia); y la concentración de algunas enzimas o la medida de su actividad, como, por ejemplo, las transaminasas hepáticas (transaminasemia).

EXÁMENES DE CULTIVO:
En la sangre también pueden realizarse exámenes de cultivo para detectar la eventual presencia de microorganismos y establecer su sensibilidad a los antibióticos mediante la realización de un antibiograma. Algunos análisis son muy rápidos y pueden realizarse en pocas horas, mientras otros, como las pruebas de cultivo, requieren algunos días. (Encarta)


Colesterol:
Alcohol complejo que forma parte de todas las grasas y aceites animales. Actúa como precursor en la síntesis de vitamina D. El colesterol pertenece a un grupo de compuestos conocidos como esteroides, y está relacionado con las hormonas sexuales producidas en las gónadas y las hormonas de la corteza suprarrenal. Su fórmula química es: Cuando el colesterol se eleva en la sangre por encima de unos niveles, considerados como normales, se produce una enfermedad conocida como hipercolesterolemia. Se consideran normales, valores de colesterol en la sangre iguales o inferiores a 200 mg/dl. En las hipercolesterolemias leves los valores de colesterol se sitúan entre 200 y 249 mg/dl; en las hipercolesterolemias moderadas se sitúan entre 250 y 299 mg/dl y en las hipercolesterolemias graves los valores de colesterol superan los 299 mg/dl. Sin embargo, hay que considerar que, aunque el colesterol es el factor de riesgo más importante de las cardiopatías isquémicas en pacientes menores de 50 años, existen otros factores de riesgo cardiovascular, como la hipertensión, la diabetes, el tabaquismo o la obesidad, cuyos efectos se suman a la hora de facilitar un evento cardiovascular. Existe una estrecha relación entre los niveles de colesterol de la sangre, los niveles de otras grasas o lípidos y el desarrollo de la aterosclerosis (véase Arteria). En esta enfermedad, las placas que contienen colesterol se depositan en las paredes de las arterias, en especial en las de pequeño y mediano tamaño, reduciendo su diámetro interior y el flujo de sangre. El cierre total de las arterias, como el que puede darse en las arterias coronarias provocando un ataque al corazón, se desarrolla en lugares donde las paredes arteriales se han endurecido por el efecto de estas placas. Aunque muchos alimentos, sobre todos los lácteos y la grasa de la carne, contienen colesterol, el cuerpo también lo sintetiza a partir de sustancias libres de colesterol. No obstante, las investigaciones indican que una dieta rica en colesterol genera en la sangre niveles anormalmente altos de colesterol, así como de grasas y lípidos relacionados con él. Las pruebas demuestran de una manera contundente que las personas con dichos niveles son más propensas a padecer aterosclerosis e infartos que las personas con niveles bajos. También resulta significativo el hecho de que los científicos hayan identificado dos tipos de proteínas que transportan el colesterol en la sangre, llamadas lipoproteínas de alta y de baja densidad. Se cree que la proteína de baja densidad favorece la aterosclerosis, mientras que el componente de alta densidad puede retrasarla. Los altos niveles de lipoproteínas de baja densidad en el plasma aumentan también el riesgo de infarto y enfermedades del corazón. Las personas que por herencia tienen niveles de colesterol anormalmente altos, especialmente colesterol unido a lipoproteínas de baja densidad, pueden reducir el riesgo de infarto disminuyendo el colesterol en la sangre. Esto se consigue con una dieta baja en colesterol y grasas saturadas, haciendo suficiente ejercicio y utilizando si es necesario cierto tipo de fármacos. Actualmente existen varios tipos de fármacos que inhiben la síntesis de colesterol. Se utilizan estos tratamientos fundamentalmente para tratar pacientes con hipercolesterolemias familiares, cuando las cifras de colesterol en la sangre son exageradamente elevadas, cuando existen otros factores de riesgo cardiovascular o cuando después de tres meses sólo con tratamiento dietético no se han conseguido reducir las cifras de colesterol a unos rangos satisfactorios. El colesterol y sus derivados se segregan a través de las glándulas sebáceas de la piel para actuar como lubricantes y como cubiertas protectoras del pelo y la piel. La lanolina, una grasa extraída de la lana de oveja sin tratar, se compone en su mayor parte de ésteres de colesterol y tiene una gran variedad de usos comerciales en lubricantes, sustancias protectoras de cuero y piel, pomadas y cosméticos. (Encarta)


Bazo:
Órgano de tipo glandular, aplanado y oblongo, situado en la zona superior izquierda de la cavidad abdominal, en contacto con el páncreas, el diafragma y el riñón izquierdo; está sujeto por bandas fibrosas unidas al peritoneo (la membrana que reviste la cavidad abdominal). Aunque su tamaño varía de unas personas a otras suele tener una longitud de 13 cm, una anchura de 10 cm y un grosor de 3,8 cm así como un peso de 200 g aproximadamente. El bazo no se considera una glándula endocrina debido a que en apariencia no produce secreciones, aunque en ciertas enfermedades elabora una hormona que afecta a la producción de los glóbulos rojos de la sangre en la médula ósea. En el feto la función principal del órgano es la producción de hematíes (glóbulos rojos) y leucocitos (glóbulos blancos), que suele cesar después del nacimiento, aunque se puede reanudar con posterioridad si alguna enfermedad debilita esta función en la médula ósea. En el adulto sólo se forman células plasmáticas y linfocitos y monocitos, dos tipos de leucocitos. Algunas personas nacen sin bazo. El bazo está irrigado por la arteria esplénica, y su sangre venosa se dirige hacia el hígado. Como parte integrante del sistema linfático y vascular ocupa una posición única que le permite eliminar microorganismos causantes de enfermedades y destruir hematíes anómalos, alterados o envejecidos. Extrae el hierro a partir de la hemoglobina de los glóbulos rojos, para su posterior utilización por el organismo, así como sustancias de desecho como los pigmentos biliares para su excreción, en forma de bilis, por el hígado. El bazo elabora anticuerpos contra diversos tipos de células sanguíneas y microorganismos infecciosos. En algunos mamíferos (con excepción de los humanos) almacena los glóbulos rojos y en casos de hemorragia los libera hacia la circulación para su concentración en la sangre. En humanos, sirve como reserva de otras células sanguíneas y de sangre. Muchas enfermedades afectan al bazo: en la esplenomegalia, el bazo aumenta su tamaño hasta alcanzar en algunas ocasiones enormes dimensiones. Este estado, que suele ser un indicador de la existencia de una enfermedad en cualquier lugar del organismo, refleja infecciones bacterianas, parasitarias y virales del tipo de mononucleosis infecciosa, tuberculosis, malaria, artritis reumatoide, e histoplasmosis. La esplenomegalia también puede ser causada por una cirrosis hepática. Cuando la sangre no puede circular a través del bazo, se acumula en grandes volúmenes que originan en éste una gran distensión. En el hiperesplenismo, un bazo hiperactivo o con la función alterada, la tasa de destrucción de hematíes puede ser tan elevada que se origine una variedad de anemias hemolíticas. Una hemorragia producida en un bazo aumentado de tamaño puede agravar la anemia y provocar también un déficit de hierro. Los abscesos esplénicos son infrecuentes y pueden estar causados por diversos bacilos y por infecciones adyacentes, como una úlcera péptica perforada. Los abscesos pequeños suelen seguir un curso benigno sin llegar a ser detectados. Sin embargo, los abscesos grandes se abren en ocasiones hacia la cavidad abdominal originando una peritonitis, o la infección puede invadir la circulación sanguínea y alcanzar el hígado, donde se forman abscesos. Los quistes esplénicos son raros, y tampoco es asiento frecuente de carcinomas o cánceres. La hiperactividad esplénica puede mejorar en algunas ocasiones, a través de un tratamiento de radioterapia o administración de corticoides (esteroides extraídos de la corteza suprarrenal). Los abscesos se tratan con antibióticos de amplio espectro o con drenaje quirúrgico. La extirpación quirúrgica del bazo es necesaria si se produce su ruptura o la de la arteria esplénica. Otros órganos producen mayor número de anticuerpos, y la médula ósea sobrepasa el volumen de producción de glóbulos rojos del bazo; por otro lado, el hígado, la hipófisis, y las glándulas suprarrenales destruyen más bacterias que el bazo. (Encarta)

Corticoides:
[corticosteroides] (del lat. cortex, corteza, y esteroide) o corticoides son una variedad de hormonas del grupo de los esteroides (producida por la corteza de las glándulas suprarrenales) y sus derivados. Los efectos de los corticosteroides pueden dividirse en glucocorticoide y mineralocorticoide. Están implicados en una variedad de mecanismos fisiológicos, incluyendo aquellos que regulan la inflamación, el sistema inmunitario, el metabolismo de hidratos de carbono, el catabolismo de proteínas, los niveles electrolíticos en plasma y los que caracterizan la respuesta frente al estrés. Estas sustancias pueden sintetizarse artificialmente y tienen aplicaciones terapéuticas, utilizándose principalmente debido a sus propiedades antiinflamatorias e inmunosupresoras y a sus efectos sobre el metabolismo. Suprimir los mecanismos inflamatorios normales puede desencadenar problemas de salud más graves. Si se emplean indiscriminadamente corticoides en el tratamiento de infecciones virales se da el caso que los virus infecciosos se desarrollen más rápido y más peligrosamente. El cortisol, principal glucocorticoide secretado por la corteza suprarrenal, es el esteroide más abundante en la sangre periférica.

 

 

[ Inicio | DOCS | Sociedad | Economía | Historia | SER | Literatura | Filosofía | Naturaleza | Africa ]